
An Unprecedented Type of Linear Metallocene with an f-Element
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Since the discovery of ferrocene (C5H5)2Fe,1 a milestone in the
history of modern organometallic chemistry, metallocenes and their
derivatives did not cease attracting considerable attention for their
fascinating aspects, from theory to industrial applications.2 A most
intriguing feature of these so-called sandwich compounds concerns
the arrangement of the biscyclopentadienyl metal fragment, which
adopts either a linear or a bent structure, with the five-membered
rings parallel or not. In addition to representing a synthetic
challenge, changing the geometry of a metallocene complex from
linear to bent or vice versa is of major significance for the control
of distinct physicochemical properties and/or reactivity and for the
evaluation of the relative importance of covalent, electrostatic, and
steric interactions in the metal-cyclopentadienyl bonding.3 Linear
sandwich complexes, such as ferrocene and chromocene, were
forced to bend by the introduction of an interannular bridge between
the cyclopentadienyl rings.4,5 On the opposite, it was possible to
make bent metallocenes linear by increasing the steric bulk of the
ring substituents. Thus, the plumbocene (C5Me4SiMe2

tBu)2Pb or
the titanocenes [(C5Me4R)2Ti] (R ) SiMe3, SiMe2

tBu) exhibit
parallel cyclopentadienyl rings, and the latter are reluctant to form
bent derivatives of the type (C5H5)2TiL2 (L ) PF3, PMe3, CO).6,7

Biscyclopentadienyl compounds of the f-elements constitute a large
and varied range of metallocene derivatives which are found
exclusively in a bent-sandwich configuration, whatever the 4f or
5f ion, the oxidation state, the electronic charge, and the nature
and number of auxiliary ligands.8 Here we present the synthesis
and crystal structure of the uranium compounds [(C5Me5)2U-
(NCMe)5]X2 (X ) I, 1 or BPh4, 2), the first linear metallocenes of
an f-element. In this novel type ofπ-sandwich complexes, the
cyclopentadienyl rings are forced to be parallel through a new
synthetic strategy, that is the full filling of the equatorial girdle of
the (C5Me5)2U fragment with donor ligands.

As a preliminary, we noted that the1H NMR spectra of (C5-
Me5)2UCl2 and (C5Me5)2UI2

9,10 are quite different in acetonitrile,
exhibiting signals atδ 12.7 and 35.1, respectively, while the C5-
Me5 resonances are in theδ 9-18 range in benzene or pyridine;
this observation strongly suggested that (C5Me5)2UI2 was converted
into a new compound in acetonitrile. Elimination of the solvent
under vacuum gave back (C5Me5)2UI2, but concentration of the
solution led to the formation of dark brown crystals, suitable for
X-ray diffraction analysis, of a solvate of [(C5Me5)2U(NCMe)5]I 2

1 (Figure 1).9,11 Most strikingly, the two cyclopentadienyl rings
are quite parallel, forming a dihedral angle of 0.5(2)°, and are
equidistant from and parallel to the plane defined by the metal center
and nitrogen atoms of the five acetonitrile ligands. The [(C5Me5)2U-
(NCMe)5]2+ cation is the first metallocene with auxiliary ligands
which is linear. The C5Me5 rings are eclipsed, in a staggered
conformation with respect to the pentagon of nitrogen atoms, a
geometry which minimizes the intramolecular steric interactions.
By taking into account the coordination number, the short average
U-C bond length of 2.81(1) Å, in the range of analogous distances
in bent-sandwich compounds of the type (C5Me5)2UX2, reflects the

strength of the U-C5Me5 interaction. The average U-N distance
of 2.547(8) Å is similar to that measured in other acetonitrile adducts
of uranium(IV).12

The easy formation of1 highlights the major influence of both
the solvents and the counterions. Though acetonitrile is known to
dissociate the U-I bond of U(III) and U(IV) complexes, thus
favoring the formation of polycationic species,10b,12,13the weaker
lability of Cl- versus I- explains why the dication [(C5Me5)2U-
(NCMe)5]2+ could not be obtained from (C5Me5)2UCl2. However,
as noted before, (C5Me5)2UI2 was recovered when the crystals of
1 were dried under vacuum. Suppressing the back-coordination of
the counterion by replacement of the iodide with the less coordinat-
ing tetraphenylborate group afforded [(C5Me5)2U(NCMe)5][BPh4]2

2, which proved to be stable toward elimination of the MeCN
ligands. Dark red crystals of2 were obtained in 51% yield after

Figure 1. Views of the dication [(C5Me5)2U(NCMe)5]2+ parallel (a) and
perpendicular (b) to the cyclopentadienyl rings.

Published on Web 01/07/2006

1082 9 J. AM. CHEM. SOC. 2006 , 128, 1082-1083 10.1021/ja057226s CCC: $33.50 © 2006 American Chemical Society



treatment of (C5Me5)2UI2 with TlBPh4 in acetonitrile;11,14compound
2 was isolated with a better yield of 80% from the reaction of (C5-
Me5)2UMe2 and HNEt3BPh4 in acetonitrile.14 The crystal structure
of the cation of2 is practically identical to that of1.

Complexes1 and2 open attractive perspectives in the chemistry
of linear metallocenes. Their novel structure raises the theoretical
problem of the nature of the metal-ligand interaction and of its
occurrence with other f-elements. Extending the variety of these
compounds is in progress, either by changing the donor ligands or
the metal and its oxidation state.15

Supporting Information Available: Crystallographic data in CIF
format for 1 and 2. This material is available free of charge via the
Internet at http://pubs.acs.org.
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